Multi-label Lazy Associative Classification
نویسندگان
چکیده
Most current work on classification has been focused on learning from a set of instances that are associated with a single label (i.e., single-label classification). However, many applications, such as gene functional prediction and text categorization, may allow the instances to be associated with multiple labels simultaneously. Multi-label classification is a generalization of single-label classification, and its generality makes it much more difficult to solve. Despite its importance, research on multi-label classification is still lacking. Common approaches simply learn independent binary classifiers for each label, and do not exploit dependencies among labels. Also, several small disjuncts may appear due to the possibly large number of label combinations, and neglecting these small disjuncts may degrade classification accuracy. In this paper we propose a multi-label lazy associative classifier, which progressively exploits dependencies among labels. Further, since in our lazy strategy the classification model is induced on an instance-based fashion, the proposed approach can provide a better coverage of small disjuncts. Gains of up to 24% are observed when the proposed approach is compared against the state-of-the-art multi-label classifiers.
منابع مشابه
Eager, Lazy and Hybrid Algorithms for Multi-Criteria Associative Classification
Classification aims to map a data instance to its appropriate class (or label). In associative classification the mapping is done through an association rule with the consequent restricted to the class attribute. Eager associative classification algorithms build a single rule set during the training phase, and this rule set is used to classify all test instances. Lazy algorithms, however, do no...
متن کاملML-KNN: A lazy learning approach to multi-label learning
Multi-label learning originated from the investigation of text categorization problem, where each document may belong to several predefined topics simultaneously. In multi-label learning, the training set is composed of instances each associated with a set of labels, and the task is to predict the label sets of unseen instances through analyzing training instances with known label sets. In this...
متن کاملExploiting Associations between Class Labels in Multi-label Classification
Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...
متن کاملA Coupled k-Nearest Neighbor Algorithm for Multi-label Classification
ML-kNN is a well-known algorithm for multi-label classification. Although effective in some cases, ML-kNN has some defect due to the fact that it is a binary relevance classifier which only considers one label every time. In this paper, we present a new method for multi-label classification, which is based on lazy learning approaches to classify an unseen instance on the basis of its k nearest ...
متن کاملEvolutionary feature weighting to improve the performance of multi-label lazy algorithms
In the last decade several modern applications where the examples belong to more than one label at a time have attracted the attention of research into machine learning. Several derivatives of the k-nearest neighbours classifier to deal with multi-label data have been proposed. A k-nearest neighbours classifier has a high dependency with respect to the definition of a distance function, which i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007